Computes the Principal Components Torsion and the Minimum Torsion for diversification analysis.
Arguments
- sigma
A
n x n
covariance matrix.- model
One of: "pca" or "minimum-torsion".
- method
One of: "approximate" or "exact". Only used when
model = "minimum-torsion"
.- max_niter
An
integer
with the maximum number of iterations.
Examples
# extract the invariants from the data
set.seed(123)
log_ret <- matrix(rnorm(400), ncol = 4) / 10
# calculate the covariance matrix
sigma <- stats::cov(log_ret)
# torsion
torsion(sigma = sigma, model = 'minimum-torsion', method ='exact')
#> [,1] [,2] [,3] [,4]
#> [1,] 1.00534916 0.02148323 0.06301570 0.02088640
#> [2,] 0.02410872 1.00122793 -0.01410694 -0.02018601
#> [3,] 0.06823684 -0.01361221 1.00506025 0.02313965
#> [4,] 0.02704863 -0.02329473 0.02767377 1.00160337