Stock prices are known for been non-stationary. Use get_returns()
as a
pre-processing step for econometric modeling.
get_returns(.tbl, .group, .type, .omit_na = FALSE, ...) # S3 method for default get_returns(.tbl, .group, .type, .omit_na = FALSE, ...) # S3 method for tbl_df get_returns(.tbl, .group, .type, .omit_na = FALSE, ...)
.tbl | A tidy |
---|---|
.group | The column in which the data should be grouped. This will often be a column with stock tickers or stocks names. |
.type | The method used to calculate returns. One of:
|
.omit_na | Should NA values be omitted? Default is |
... | The column (or columns) in which the calculation should be conducted. |
A tidy tibble
.
library(YahooTickers) library(dplyr) get_tickers(dow) %>% slice(1:3) %>% get_stocks(.) %>% get_returns(., .group = tickers, .type = arithmetic, .omit_na = TRUE, adjusted) #> # A tibble: 8,985 × 3 #> date tickers adjusted #> <date> <fct> <dbl> #> 1 2010-01-05 MMM -0.00626 #> 2 2010-01-06 MMM 0.0142 #> 3 2010-01-07 MMM 0.000717 #> 4 2010-01-08 MMM 0.00705 #> 5 2010-01-11 MMM -0.00403 #> 6 2010-01-12 MMM 0.000834 #> 7 2010-01-13 MMM -0.00321 #> 8 2010-01-14 MMM -0.00334 #> 9 2010-01-15 MMM -0.00156 #> 10 2010-01-19 MMM 0.0210 #> # … with 8,975 more rows