fit_hyp.Rd
Performs a maximum likelihood estimation on the Hyperbolic distribution
(univariate and multivariate). Wrappers fit.hypuv
and
fit.hypmv
fit_hyp(x, symmetric = FALSE) # S3 method for default fit_hyp(x, symmetric = FALSE) # S3 method for tbl fit_hyp(x, symmetric = FALSE) # S3 method for xts fit_hyp(x, symmetric = FALSE) # S3 method for matrix fit_hyp(x, symmetric = FALSE)
x | A tabular (non-tidy) data structure. |
---|---|
symmetric | A flag. Should the estimated distribution be symmetric?
Defaults to |
A list
of the the class cma_fit
with 21
components.
fit_hyp
fit_nig
fit_vg
fit_t
fit_normal
x <- matrix(diff(log(EuStockMarkets)), ncol = 4) # multivariate estimation fit_hyp(x) #> # Margins Estimation #> Converged: TRUE #> Dimension: 4 #> AIC: -52714.94 #> Log-Likelihood: 26376.47 #> Model: Asymmetric Hyperbolic # univariate estimation fit_hyp(x[ , 4, drop = FALSE]) #> # Margins Estimation #> Converged: TRUE #> Dimension: 1 #> AIC: -12784.62 #> Log-Likelihood: 6396.311 #> Model: Asymmetric Hyperbolic