fit_vg.RdPerforms maximum likelihood estimation on the Variance-Gamma (VG)
distribution (univariate and multivariate). Wrappers fit.VGuv
and fit.VGmv.
fit_vg(x, symmetric = FALSE) # S3 method for default fit_vg(x, symmetric = FALSE) # S3 method for tbl fit_vg(x, symmetric = FALSE) # S3 method for xts fit_vg(x, symmetric = FALSE) # S3 method for matrix fit_vg(x, symmetric = FALSE)
| x | A tabular (non-tidy) data structure.  | 
    
|---|---|
| symmetric | A   | 
    
A list of the the class cma_fit with 21 components.
x <- matrix(diff(log(EuStockMarkets)), ncol = 4) # multivariate estimation fit_vg(x[ , 3:4]) #> # Margins Estimation #> Converged: TRUE #> Dimension: 2 #> AIC: -25416.89 #> Log-Likelihood: 12716.45 #> Model: Asymmetric Variance Gamma # univariate estimation fit_vg(x[ , 4, drop = FALSE]) #> Singularity (x-mu)==0: Interpolate with splines. #> Singularity (x-mu)==0: Interpolate with splines. #> Singularity (x-mu)==0: Interpolate with splines. #> Singularity (x-mu)==0: Interpolate with splines. #> # Margins Estimation #> Converged: TRUE #> Dimension: 1 #> AIC: -12783.01 #> Log-Likelihood: 6395.503 #> Model: Asymmetric Variance Gamma