fit_ghd.RdPerforms maximum likelihood estimation on the Generalized Hyperbolic distribution
(univariate and multivariate). Wrappers fit.ghypuv and
fit.ghypmv.
fit_ghd(x, symmetric = FALSE) # S3 method for default fit_ghd(x, symmetric = FALSE) # S3 method for tbl fit_ghd(x, symmetric = FALSE) # S3 method for xts fit_ghd(x, symmetric = FALSE) # S3 method for matrix fit_ghd(x, symmetric = FALSE)
| x | A tabular (non-tidy) data structure. |
|---|---|
| symmetric | A |
A list of the the class cma_fit with 21 components.
x <- matrix(diff(log(EuStockMarkets)), ncol = 4) # multivariate estimation fit_ghd(x) #> # Margins Estimation #> Converged: TRUE #> Dimension: 4 #> AIC: -56122.36 #> Log-Likelihood: 28081.18 #> Model: Asymmetric Generalized Hyperbolic # univariate estimation fit_ghd(x[ , 3, drop = FALSE]) #> # Margins Estimation #> Converged: TRUE #> Dimension: 1 #> AIC: -11563.82 #> Log-Likelihood: 5786.912 #> Model: Asymmetric Generalized Hyperbolic