fit_nig.RdPerforms maximum likelihood estimation on the Normal-Inverse Gaussian (NIG)
distribution (univariate and multivariate). Wrappers fit.NIGuv
and fit.NIGmv.
fit_nig(x, symmetric = FALSE) # S3 method for default fit_nig(x, symmetric = FALSE) # S3 method for tbl fit_nig(x, symmetric = FALSE) # S3 method for xts fit_nig(x, symmetric = FALSE) # S3 method for matrix fit_nig(x, symmetric = FALSE)
| x | A tabular (non-tidy) data structure.  | 
    
|---|---|
| symmetric | A   | 
    
A list of the the class cma_fit with 21 components.
x <- matrix(diff(log(EuStockMarkets)), ncol = 4) # multivariate estimation fit_nig(x) #> # Margins Estimation #> Converged: TRUE #> Dimension: 4 #> AIC: -52708.2 #> Log-Likelihood: 26373.1 #> Model: Asymmetric Normal Inverse Gaussian # univariate estimation fit_nig(x[ , 4, drop = FALSE]) #> # Margins Estimation #> Converged: TRUE #> Dimension: 1 #> AIC: -12786.8 #> Log-Likelihood: 6397.4 #> Model: Asymmetric Normal Inverse Gaussian