Skip to contents

Full Information

Functions that completely describe a distribution.

crisp()
Full Information by Market Conditioning
exp_decay()
Full Information by Exponential Decay
kernel_normal()
Full Information by Kernel-Damping

Partial Information

Functions that partially describe a distribution.

kernel_entropy()
Partial Information Kernel-Damping
double_decay()
Flexible Probabilities using Partial Information

Views on the Market

Functions that help to construct the elements of entropy programming.

view_on_mean()
Views on Expected Returns
view_on_covariance()
Views on Covariance Matrix
view_on_correlation()
Views on Correlation Structure
view_on_volatility()
Views on Volatility
view_on_rank()
Views on Relative Performance
view_on_copula()
Views on Copulas
view_on_marginal_distribution()
Views on Marginal Distribution
view_on_joint_distribution()
Views on Joint Distribution

Optimization

Minimum Relative Entropy

entropy_pooling()
Numerical Entropy Minimization
relative_entropy()
Relative Entropy

Utilities

Functions to manipulate data.

bind_probs()
Stack Flexible Probabilities
bind_views()
Stack Different Views
bootstrap_scenarios()
Flexible Probabilities Driven Bootstrap
ens()
Effective Number of Scenarios
empirical_stats()
Summary Statistics for Empirical Distributions
ffp_moments()
Moments with Flexible Probabilities
half_life()
Half-Life Calculation

Visualization

Functions to explore ffp objects with help of ggplot2.

autoplot(<ffp>) plot(<ffp>)
Inspection of a ffp object with ggplot2
scenario_density() scenario_histogram()
Plot Scenarios

Class

Functions to manipulate ffp objects.

ffp() is_ffp() as_ffp()
Manipulate the ffp Class

Data

db
Dataset used in Historical Scenarios with Fully Flexible Probabilities (matrix format).
db_tbl
Dataset used in Historical Scenarios with Fully Flexible Probabilities (tibble format).